Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 170, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347446

RESUMO

BACKGROUND: This study explores the impact of disrupting the circadian clock through a Cycle gene knockout (KO) on the transcriptome of Aedes aegypti mosquitoes. The investigation aims to uncover the resulting alterations in gene expression patterns and physiological processes. RESULTS: Transcriptome analysis was conducted on Cyc knockout (AeCyc-/-) and wild-type mosquitoes at four time points in a light-dark cycle. The study identified system-driven genes that exhibit rhythmic expression independently of the core clock machinery. Cyc disruption led to altered expression of essential clock genes, affecting metabolic processes, signaling pathways, stimulus responses and immune responses. Notably, gene ontology enrichment of odorant binding proteins, indicating the clock's role in sensory perception. The absence of Cyc also impacted various regulation of metabolic and cell cycle processes was observed in all time points. CONCLUSIONS: The intricate circadian regulation in Ae. aegypti encompasses both core clock-driven and system-driven genes. The KO of Cyc gene instigated extensive gene expression changes, impacting various processes, thereby potentially affecting cellular and metabolic functions, immune responses, and sensory perception. The circadian clock's multifaceted involvement in diverse biological processes, along with its role in the mosquito's daily rhythms, forms a nexus that influences the vector's capacity to transmit diseases. These insights shed light on the circadian clock's role in shaping mosquito biology and behavior, opening new avenues for innovative disease control strategies.


Assuntos
Aedes , Relógios Circadianos , Animais , Relógios Circadianos/genética , Aedes/metabolismo , Ritmo Circadiano/genética , Mosquitos Vetores , Transcriptoma
2.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045402

RESUMO

We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.

3.
mBio ; : e0228923, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909749

RESUMO

Mosquito saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis and immune responses. Here, we generated two knockout (KO) mosquito lines by CRISPR/Cas9 to functionally characterize D7L1 and D7L2, two abundantly expressed salivary proteins from the yellow fever mosquito vector Aedes aegypti. The D7s bind and scavenge biogenic amines and eicosanoids involved in hemostasis at the bite site. The absence of D7 proteins in the salivary glands of KO mosquitoes was confirmed by mass spectrometry, enzyme-linked immunosorbent assay, and fluorescence microscopy of the salivary glands with specific antibodies. D7-KO mosquitoes had longer probing times than parental wildtypes. The differences in probing time were abolished when mutant mice resistant to inflammatory insults were used. These results confirmed the role of D7 proteins as leukotriene scavengers in vivo. We also investigated the role of D7 salivary proteins in Plasmodium gallinaceum infection and transmission. Both KO lines had significantly fewer oocysts per midgut. We hypothesize that the absence of D7 proteins in the midgut of KO mosquitoes might be responsible for creating a harsh environment for the parasite. The information generated by this work highlights the biological functionality of salivary gene products in blood feeding and pathogen infection. IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.

4.
Sci Rep ; 13(1): 20352, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990055

RESUMO

Molecular tools for modulating transgene expression in Aedes aegypti are few. Here we demonstrate that adjustments to the AePUb promoter length can alter expression levels of two reporter proteins in Ae. aegypti cell culture and in mosquitoes. This provides a simple means for increasing or decreasing expression of a gene of interest and easy translation from cells to whole insects.


Assuntos
Aedes , Animais , Aedes/genética , Aedes/metabolismo , Regiões Promotoras Genéticas , Transgenes , Expressão Gênica
5.
Artigo em Inglês | MEDLINE | ID: mdl-37860147

RESUMO

Efforts to eradicate mosquito-borne diseases have increased the demand for genetic control strategies, many of which involve the release of genetically modified (GM) mosquito males into natural populations. The first hurdle for GM males is to compete with their wild-type counterparts for access to females. Here, we introduce an eye color-based mating assay, in which both Lvp wild-type and kynurenine 3-monooxygenase (kmo)-null males compete for access to kmo-null females, and therefore the eye color phenotype (black or white) of the progeny is dependent on the parental mating pair. A series of tests addressed that male mating competitiveness between the two strains can significantly be influenced by adult density, light intensity, and mating duration. Interestingly, the mating competitiveness of males was not correlated with body size, which was negatively influenced by a high larval density. Lastly, this eye color-associated assay was applied to characterize GM mosquitoes in their mating competitiveness, establishing this method as a fast and precise way of benchmarking this fitness parameter for laboratory-raised males.

6.
Risk Anal ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882685

RESUMO

With limited understanding of most new biotechnologies, how do citizens form their opinion and what factors influence their attitudes about these innovations? In this study, we use gene drive biotechnology in agricultural pest management as an example and theoretically propose that given low levels of knowledge and awareness, citizens' acceptance of, or opposition to, gene drive is significantly shaped by two predisposition factors: individuals' general orientation toward science and technology, and their specific benefit-risk assessment frame. Empirically, we employ data collected from a recent US nationally representative public opinion survey (N = 1220) and conduct statistical analyses to test the hypotheses derived from our theoretical expectations. Our statistical analyses, based on various model specifications and controlling for individual-level covariates and state-fixed effects, show that citizens with a more favorable general orientation toward science and technology are more likely to accept gene drive. Our data analyses also demonstrate that citizens' specific gene drive assessment frame-consisting of a potential benefit dimension and a potential risk dimension, significantly shapes their attitudes as well-specifically, people emphasizing more on the benefit dimension are more likely to accept gene drive, whereas those who place more importance on the risk dimension tend to oppose it. We discuss contributions of our study and make suggestions for future research in the conclusion.

7.
Genome Res ; 33(9): 1638-1648, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37802532

RESUMO

As the major vector for dengue, Zika, yellow fever, and chikungunya viruses, the mosquito Aedes aegypti is one of the most important insects in public health. These viruses are transmitted by bloodfeeding, which is also necessary for the reproduction of the mosquito. Thus, the midgut plays an essential role in mosquito physiology as the center for bloodmeal digestion and as an organ that serves as the first line of defense against viruses. Despite its importance, transcriptomic dynamics with fine temporal resolution across the entire digestion cycle have not yet been reported. To fill this gap, we conducted a transcriptomic analysis of A. aegypti female midguts across a 72-h bloodmeal digestion cycle for 11 time points, with a particular focus on the first 24 h. PCA analysis confirmed that 72 h is indeed a complete digestion cycle. Cluster and GO enrichment analysis showed the orchestrated modulation of thousands of genes to accomplish the midgut's role as the center for digestion, as well as nutrient transport with a clear progression with sequential emphasis on transcription, translation, energy production, nutrient metabolism, transport, and finally, autophagy by 24-36 h. We further determined that many serine proteases are robustly expressed as if to prepare for unexpected physiological challenges. This study provides a powerful resource for the analysis of genomic features that coordinate the rapid and complex transcriptional program induced by mosquito bloodfeeding.


Assuntos
Aedes , Arbovírus , Infecção por Zika virus , Zika virus , Animais , Feminino , Aedes/genética , Transcriptoma , Arbovírus/genética , Perfilação da Expressão Gênica , Zika virus/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-37475832

RESUMO

To maintain genome stability, eukaryotic cells orchestrate DNA repair pathways to process DNA double-strand breaks (DSBs) that result from diverse developmental or environmental stimuli. Bias in the selection of DSB repair pathways, either non-homologous end joining (NHEJ) or homology-directed repair (HDR), is also critical for efficient gene editing and for homing-based gene drive approaches developed for the control of disease-transmitting vector mosquitoes. However, little is understood about DNA repair homeostasis in the mosquito genome. Here, we utilized CRISPR/Cas9 to generate indel mutant strains for core NHEJ factors ku80, DNA ligase IV (lig4), and DNA-PKcs in the mosquito Aedes aegypti and evaluated the corresponding effects on DNA repair. In a plasmid-based assay, disruption of ku80 or lig4, but not DNA-PKcs, reduced both NHEJ and SSA. However, a transgenic reporter strain-based test revealed that those mutations significantly biased DNA repair events toward SSA. Interestingly, ku80 mutation also significantly increased the end joining rate by a yet-characterized mechanism in males. Our study provides evidence that the core NHEJ factors have an antagonistic effect on SSA-based DSB repair of the Ae. aegypti genome. Down-modulating the NHEJ pathway can enhance the efficiency of nuclease-based genetic control approaches, as most of those operate by homology-based repair processes along with extensive DNA end resection that is antagonized by NHEJ.

9.
J Nutr ; 153(5): 1636-1645, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907444

RESUMO

BACKGROUND: Ribonucleosides and RNA are an underappreciated nutrient group essential during Drosophila larval development and growth. Detection of these nutrients requires at least one of the 6 closely related taste receptors encoded by the Gr28 genes, one of the most conserved insect taste receptor subfamilies. OBJECTIVES: We investigated whether blow fly larvae and mosquito larvae, which shared the last ancestor with Drosophila about 65 and 260 million years ago, respectively, can taste RNA and ribose. We also tested whether the Gr28 homologous genes of the mosquitoes Aedes aegypti and Anopheles gambiae can sense these nutrients when expressed in transgenic Drosophila larvae. METHODS: Taste preference in blow flies was examined by adapting a 2-choice preference assay that has been well-established for Drosophila larvae. For the mosquito Aedes aegypti, we developed a new 2-choice preference assay that accommodates the aquatic environment of these insect larvae. Finally, we identified Gr28 homologs in these species and expressed them in Drosophila melanogaster to determine their potential function as RNA receptors. RESULTS: Larvae of the blow fly Cochliomyia macellaria and Lucilia cuprina are strongly attracted to RNA (0.5 mg/mL) in the 2-choice feeding assays (P < 0.05). Similarly, the mosquito Aedes aegypti larvae showed a strong preference for RNA (2.5 mg/mL) in an aquatic 2-choice feeding assay. Moreover, when Gr28 homologs of Aedes or Anopheles mosquitoes are expressed in appetitive taste neurons of Drosophila melanogaster larvae lacking their Gr28 genes, preference for RNA (0.5 mg/mL) and ribose (0.1 M) is rescued (P < 0.05). CONCLUSIONS: The appetitive taste for RNA and ribonucleosides in insects emerged about 260 million years ago, the time mosquitoes and fruit flies diverged from their last common ancestor. Like sugar receptors, receptors for RNA have been highly conserved during insect evolution, suggesting that RNA is a critical nutrient for fast-growing insect larvae.


Assuntos
Aedes , Ribonucleosídeos , Animais , RNA/genética , Drosophila melanogaster/genética , Paladar/fisiologia , Ribose , Drosophila/genética , Larva/genética , Aedes/genética
10.
Proc Natl Acad Sci U S A ; 120(11): e2213701120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893279

RESUMO

While it has long been known that the transmission of mosquito-borne viruses depends on the establishment of persistent and nonlethal infections in the invertebrate host, specific roles for the insects' antiviral immune pathways in modulating the pathogenesis of viral infections is the subject of speculation and debate. Here, we show that a loss-of-function mutation in the Aedes aegypti Dicer-2 (Dcr-2) gene renders the insect acutely susceptible to a disease phenotype upon infection with pathogens in multiple virus families associated with important human diseases. Additional interrogation of the disease phenotype demonstrated that the virus-induced pathology is controlled through a canonical RNA interference (RNAi) pathway, which functions as a resistance mechanism. These results suggest comparatively modest contributions of proposed tolerance mechanisms to the fitness of A. aegypti infected with these pathogens. Similarly, the production of virus-derived piwi-interacting RNAs (vpiRNAs) was not sufficient to prevent the pathology associated with viral infections in Dcr-2 null mutants, also suggesting a less critical, or potentially secondary, role for vpiRNAs in antiviral immunity. These findings have important implications for understanding the ecological and evolutionary interactions occurring between A. aegypti and the pathogens they transmit to human and animal hosts.


Assuntos
Aedes , Flavivirus , Febre Amarela , Animais , Humanos , Interferência de RNA , Febre Amarela/genética , Flavivirus/genética , Antivirais , RNA Interferente Pequeno/genética
11.
Trends Parasitol ; 38(9): 791-804, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952630

RESUMO

Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.


Assuntos
Aedes , Culicidae , Doenças Transmitidas por Vetores , Animais , Culicidae/genética , Feminino , Masculino , Controle de Mosquitos , Mosquitos Vetores/genética , Doenças Transmitidas por Vetores/prevenção & controle
12.
Virol J ; 19(1): 128, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908059

RESUMO

Programmable gene editing systems such as CRISPR-Cas have made mosquito genome engineering more practical and accessible, catalyzing the development of cutting-edge genetic methods of disease vector control. This progress, however, has been limited by the low efficiency of homology-directed repair (HDR)-based sequence integration at DNA double-strand breaks (DSBs) and a lack of understanding about DSB repair in mosquitoes. Innovative efforts to optimize HDR sequence integration by inhibiting non-homologous end joining or promoting HDR have been performed in mammalian systems, however many of these approaches have not been applied to mosquitoes. Here, we review some of the most relevant steps of DNA DSB repair choice and highlight promising approaches that influence this choice to enhance HDR in the context of mosquito gene editing.


Assuntos
Culicidae , Edição de Genes , Animais , Sistemas CRISPR-Cas , Culicidae/genética , DNA , Edição de Genes/métodos , Mamíferos , Mosquitos Vetores/genética
13.
PLoS Negl Trop Dis ; 16(7): e0010598, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35776760

RESUMO

BACKGROUND: Aedes aegypti, the main vector of dengue, yellow fever, and other arboviruses thrives in tropical and subtropical areas around the globe putting half of the world's population at risk. Despite aggressive efforts to control the transmission of those viruses, an unacceptable number of cases occur every year, emphasizing the need to develop new control strategies. Proposals for vector control focused on population suppression could offer a feasible alternative method to reduce disease transmission. The induction of extreme male-biased sex ratios has been hypothesized to be able to suppress or collapse a population, with previous experiments showing that stable expression of the male determining factor Nix in A. aegypti is sufficient to convert females into fertile males. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report on the conditional expression of Nix in transgenic A. aegypti under the control of the tetracycline-dependent (Tet-off) system, with the goal of establishing repressible sex distortion. A masculinization phenotype was observed in three of the seven transgenic lines with females exhibiting male-like long maxillary palps and most importantly, the masculinized females were unable to blood feed. Doxycycline treatment of the transgenic lines only partially restored the normal phenotype from the masculinized transgenic lines, while RT-qPCR analysis of early embryos or adults showed no correlation between the level of masculinization and ectopic Nix expression. CONCLUSIONS/SIGNIFICANCE: While the conditional expression of Nix produced intersex phenotypes, the level of expression was insufficient to program full conversion. Modifications that increase both the level of activation (no tet) and the level of repression (with tet) will be necessary, as such this study represents one step forward in the development of genetic strategies to control vector-borne diseases via sex ratio distortion.


Assuntos
Aedes , Arbovírus , Dengue , Febre Amarela , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Mosquitos Vetores/genética
14.
Front Bioeng Biotechnol ; 10: 897231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782500

RESUMO

CRISPR-based autonomous homing gene drives are a potentially transformative technology with the power to reduce the prevalence of, or even eliminate, vector-borne diseases, agricultural pests, and invasive species. However, there are a number of regulatory, ethical, environmental, and sociopolitical concerns surrounding the potential use of gene drives, particularly regarding the possibility for any unintended outcomes that might result from such a powerful technology. Therefore, there is an imminent need for countermeasures or technologies capable of exerting precise spatiotemporal control of gene drives, if their transformative potential is ever to be fully realized. This review summarizes the current state of the art in the development of technologies to prevent the uncontrolled spread of CRISPR-based autonomous homing gene drives.

15.
PLoS Negl Trop Dis ; 16(6): e0010548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737714

RESUMO

Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3' UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes.


Assuntos
Aedes , Vírus Chikungunya , MicroRNAs , Aedes/genética , Animais , Vírus Chikungunya/genética , Drosophila melanogaster/genética , Íntrons , MicroRNAs/genética , Mosquitos Vetores/genética , RNA Interferente Pequeno/genética
16.
Cell Rep ; 39(2): 110648, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417706

RESUMO

Saliva from mosquitoes contains vasodilators that antagonize vasoconstrictors produced at the bite site. Sialokinin is a vasodilator present in the saliva of Aedes aegypti. Here, we investigate its function and describe its mechanism of action during blood feeding. Sialokinin induces nitric oxide release similar to substance P. Sialokinin-KO mosquitoes produce lower blood perfusion than parental mosquitoes at the bite site during probing and have significantly longer probing times, which result in lower blood feeding success. In contrast, there is no difference in feeding between KO and parental mosquitoes when using artificial membrane feeders or mice that are treated with a substance P receptor antagonist, confirming that sialokinin interferes with host hemostasis via NK1R signaling. While sialokinin-KO saliva does not affect virus infection in vitro, it stimulates macrophages and inhibits leukocyte recruitment in vivo. This work highlights the biological functionality of salivary proteins in blood feeding.


Assuntos
Aedes , Animais , Biologia , Camundongos , Saliva , Proteínas e Peptídeos Salivares
17.
Health Secur ; 20(1): 6-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34981962

RESUMO

Gene drive is an experimental technique that may make it possible to alter the genetic traits of whole populations of a species through the genetic modification of a relatively small number of individuals. This technology is sufficiently new that literature on the understanding and views of stakeholders and the public regarding the use of gene drive organisms in agricultural pest management is just beginning to emerge. Our team conducted a 2-pronged engagement process with Texas gene drive agricultural stakeholders to ascertain their values, beliefs, and preferences about the efficacy, safety, and risk management considerations of gene drive technology as a potential tool for agricultural pest management. We found that a majority of stakeholders support gene drive research and its potential use for managing agricultural pests. Our work with stakeholders confirms both their willingness to be engaged and the importance they place on stakeholder and public engagement regarding these issues, as well as the need to address these issues before use of gene drive as a pest management mechanism will be accepted and trusted.


Assuntos
Tecnologia de Impulso Genético , Tecnologia de Impulso Genético/métodos , Edição de Genes , Humanos , Controle de Pragas , Participação dos Interessados , Confiança
18.
PNAS Nexus ; 1(2): pgac037, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36713320

RESUMO

Promising genetics-based approaches are being developed to reduce or prevent the transmission of mosquito-vectored diseases. Less clear is how such transgenes can be removed from the environment, a concern that is particularly relevant for highly invasive gene drive transgenes. Here, we lay the groundwork for a transgene removal system based on single-strand annealing (SSA), a eukaryotic DNA repair mechanism. An SSA-based rescuer strain (kmoRG ) was engineered to have direct repeat sequences (DRs) in the Aedes aegypti kynurenine 3-monooxygenase (kmo) gene flanking the intervening transgenic cargo genes, DsRED and EGFP. Targeted induction of DNA double-strand breaks (DSBs) in the DsRED transgene successfully triggered complete elimination of the entire cargo from the kmoRG strain, restoring the wild-type kmo gene, and thereby, normal eye pigmentation. Our work establishes the framework for strategies to remove transgene sequences during the evaluation and testing of modified strains for genetics-based mosquito control.

20.
J Vis Exp ; (175)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570096

RESUMO

Mosquito gene editing has become routine in several laboratories with the establishment of systems such as transcription-activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and homing endonucleases (HEs). More recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has offered an easier and cheaper alternative for precision genome engineering. Following nuclease action, DNA repair pathways will fix the broken DNA ends, often introducing indels. These out-of-frame mutations are then used for understanding gene function in the target organisms. A drawback, however, is that mutant individuals carry no dominant marker, making identification and tracking of mutant alleles challenging, especially at scales needed for many experiments. High-resolution melt analysis (HRMA) is a simple method to identify variations in nucleic acid sequences and utilizes PCR melting curves to detect such variations. This post-PCR analysis method uses fluorescent double-stranded DNA-binding dyes with instrumentation that has temperature ramp control data capture capability and is easily scaled to 96-well plate formats. Described here is a simple workflow using HRMA for the rapid detection of CRISPR/Cas9-induced indels and the establishment of mutant lines in the mosquito Ae. aegypti. Critically, all steps can be performed with a small amount of leg tissue and do not require sacrificing the organism, allowing genetic crosses or phenotyping assays to be performed after genotyping.


Assuntos
Aedes , Sistemas CRISPR-Cas , Aedes/genética , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma , Humanos , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...